Neural Network Based Stochastic Optimal Control for Nonlinear Markov Jump Systems
نویسندگان
چکیده
This paper deals with the problem of stochastic optimal control for a class of nonlinear systems subject to Markovian jump parameters. The nonlinearities in the different jump modes are initially parameterized by multilayer neural networks (MNNs), which lead to neural Markovian jump systems. A stochastic neural Lyapunov function (NLF) is used to analyze the stability of the resulting neural control MJSs. Then, based on this stochastic NLF and the neural model, a linear state feedback controller is designed to stabilize the closed-loop nonlinear system and guaranteed an upper bound of the system performance for all admissible approximation errors of the MNNs. The control gains can be derived by solving a set of linear matrix inequalities. Finally, a single link robot arm is demonstrated to show the effectiveness of the proposed design techniques.
منابع مشابه
Identification of Multiple Input-multiple Output Non-linear System Cement Rotary Kiln using Stochastic Gradient-based Rough-neural Network
Because of the existing interactions among the variables of a multiple input-multiple output (MIMO) nonlinear system, its identification is a difficult task, particularly in the presence of uncertainties. Cement rotary kiln (CRK) is a MIMO nonlinear system in the cement factory with a complicated mechanism and uncertain disturbances. The identification of CRK is very important for different pur...
متن کاملA neural network based online learning and control approach for Markov jump systems
In this paper, we propose an optimal online control method for discrete-time nonlinear Markov jump systems (MJSs). The Markov chain and the weighted sum technique are introduced to convert the Markov jumping problem into an optimal control problem. We then use adaptive dynamic programming (ADP) to accomplish online learning and control with specific learning algorithm and detailed stability ana...
متن کاملMarkovian Delay Prediction-Based Control of Networked Systems
A new Markov-based method for real time prediction of network transmission time delays is introduced. The method considers a Multi-Layer Perceptron (MLP) neural model for the transmission network, where the number of neurons in the input layer is minimized so that the required calculations are reduced and the method can be implemented in the real-time. For this purpose, the Markov process order...
متن کاملNeural-Smith Predictor Method for Improvement of Networked Control Systems
Networked control systems (NCSs) are distributed control systems in which the nodes, including controllers, sensors, actuators, and plants are connected by a digital communication network such as the Internet. One of the most critical challenges in networked control systems is the stochastic time delay of arriving data packets in the communication network among the nodes. Using the Smith predic...
متن کاملAdaptive disturbance rejection control for nonlinear stochastic systems: an application to bioreactor system
In this paper, an adaptive scheduling H∞ disturbance rejection controller is designed for a class of nonlinear Markov jump systems with nonhomogeneous Markov jump process, in which the transition probabilities are time-varying. To estimate and reject the disturbance, a disturbance observer is considered, such that a disturbance rejection state-feedback control law is designed. Under the designe...
متن کامل